An inexact Gauss–Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model

نویسندگان

  • Noemi PETRA
  • Hongyu ZHU
  • Georg STADLER
  • Thomas J.R. HUGHES
  • Omar GHATTAS
چکیده

We propose an infinite-dimensional adjoint-based inexact Gauss–Newton method for the solution of inverse problems governed by Stokes models of ice sheet flow with nonlinear rheology and sliding law. The method is applied to infer the basal sliding coefficient and the rheological exponent parameter fields from surface velocities. The inverse problem is formulated as a nonlinear least-squares optimization problem whose cost functional is the misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to the cost functional to render the problem well-posed and account for observational error. Our findings show that the inexact Newton method is significantly more efficient than the nonlinear conjugate gradient method and that the number of Stokes solutions required to solve the inverse problem is insensitive to the number of inversion parameters. The results also show that the reconstructions of the basal sliding coefficient converge to the exact sliding coefficient as the observation error (here, the noise added to synthetic observations) decreases, and that a nonlinear rheology makes the reconstruction of the basal sliding coefficient more difficult. For the inversion of the rheology exponent field, we find that horizontally constant or smoothly varying parameter fields can be reconstructed satisfactorily from noisy observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shallow ice stream approximation

Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion EGU Abstract New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow ice stream approximation are p...

متن کامل

A new method for 3-D magnetic data inversion with physical bound

Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion is a common technique for the inversion of data. Physical bound constraint can improve the solution to the magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is important. Imposing bound constraint makes the magnetic data inversion a n...

متن کامل

Inexact Newton Methods with Restricted Additive Schwarz Based Nonlinear Elimination for Problems with High Local Nonlinearity

The classical inexact Newton algorithm is an efficient and popular technique for solving large sparse nonlinear system of equations. When the nonlinearities in the system are wellbalanced, a near quadratic convergence is often observed, however, if some of the equations are much more nonlinear than the others in the system, the convergence is much slower. The slow convergence (or sometimes dive...

متن کامل

A nonsmooth Newton multigrid method for a hybrid, shallow model of marine ice sheets

The time evolution of ice sheets and ice shelves is modelled by combining a shallow lubrication approximation for shear deformation with the shallow shelf approximation for basal sliding, along with the mass conservation principle. At each time step two p-Laplace problems and one transport problem are solved. Both p-Laplace problems are formulated as minimisation problems. They are approximated...

متن کامل

Solution of nonlinear Stokes equations discretized by high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics

Motivated by the need for efficient and accurate simulation of the dynamics of the polar ice sheets, we design high-order finite element discretizations and scalable solvers for the solution of nonlinear incompressible Stokes equations. In particular, we focus on power-law, shear thinning rheologies commonly used in modeling ice dynamics and other geophysical flows. We use nonconforming hexahed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012